Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.159
Filtrar
1.
Microbiol Res ; 283: 127712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593580

RESUMO

Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.


Assuntos
Lipídeo A , Vibrio parahaemolyticus , Lipídeo A/química , Lipídeo A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Espectrometria de Massas
2.
Gut Microbes ; 16(1): 2327377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466137

RESUMO

Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and ß-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.


Assuntos
Microbioma Gastrointestinal , Vibrio parahaemolyticus , Humanos , Animais , Zinco , Cádmio/toxicidade , Vibrio parahaemolyticus/genética , Virulência , Peróxido de Hidrogênio , Peixe-Zebra , Homeostase , Estresse Oxidativo , Ferro
3.
Int J Biol Macromol ; 262(Pt 2): 129984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342260

RESUMO

The ATP-binding cassette (ABC) transporters have crucial roles in various biological processes such as growth, development and immune defense in eukaryotes. However, the roles of ABC transporters in the immune system of crustaceans remain elusive. In this study, 38 ABC genes were systematically identified and characterized in Penaeus vannamei. Bioinformation analysis revealed that PvABC genes were categorized into ABC A-H eight subfamilies with 17 full-transporters, 11 half transporters and 10 soluble proteins, and multiple immunity-related cis-elements were found in gene promoter regions. Expression analysis showed that most PvABC genes were widely and highly expressed in immune-related tissues and responded to the stimulation of Vibrio parahaemolyticus. To investigate whether PvABC genes mediated innate immunity, PvABCC5, PvABCF1 and PvABCB4 were selected for dsRNA interference experiment. Knockdown of PvABCF1 and PvABCC5 not PvABCB4 increased the cumulative mortality of P. vannamei and bacterial loads in hepatopancreas after infection with V. parahaemolyticus. Further analysis showed that the PvABCF1 and PvABCC5 knockdown decreased expression levels of NF-κB pathway genes and antimicrobial peptides (AMPs). Collectively, these findings indicated that PvABCF1 and PvABCC5 might restrict V. parahaemolyticus challenge by positively regulating NF-κB pathway and then promoting the expression of AMPs, which would contribute to overall understand the function of ABC genes in innate immunity of invertebrates.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Vibrio parahaemolyticus/genética , Penaeidae/genética , Penaeidae/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Artrópodes/genética , Transdução de Sinais , Imunidade Inata/genética , Trifosfato de Adenosina/metabolismo
4.
Can J Microbiol ; 70(4): 128-134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415613

RESUMO

Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, has a strong capacity to form biofilms on surfaces, which is strictly regulated by the CpsS-CpsR-CpsQ regulatory cascade. OpaR, a master regulator of quorum sensing, is a global regulator that controls multiple cellular pathways including biofilm formation and virulence. QsvR is an AraC-type regulator that works coordinately with OpaR to control biofilm formation and virulence gene expression of V. parahaemolyticus. QsvR and OpaR activate cpsQ transcription. OpaR also activates cpsR transcription, but lacks the detailed regulatory mechanisms. Furthermore, it is still unknown whether QsvR regulates cpsR transcription, as well as whether QsvR and OpaR regulate cpsS transcription. In this study, the results of quantitative real-time PCR and LacZ fusion assays demonstrated that deletion of qsvR and/or opaR significantly decreased the expression levels of cpsS and cpsR compared to the wild-type strain. However, the results of two-plasmid lacZ reporter and electrophoretic mobility-shift assays showed that both QsvR and OpaR were unable to bind the regulatory DNA regions of cpsS and cpsR. Therefore, transcription of cpsS and cpsR was coordinately and indirectly activated by QsvR and OpaR. This work enriched our knowledge on the regulatory network of biofilm formation in V. parahaemolyticus.


Assuntos
Fatores de Transcrição , Vibrio parahaemolyticus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes
5.
Water Res ; 254: 121379, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422694

RESUMO

UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.


Assuntos
Vibrio parahaemolyticus , Humanos , Idoso , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Microplásticos , Plásticos , Alimentos Marinhos/microbiologia , Biofilmes , Bactérias
6.
Fish Shellfish Immunol ; 147: 109435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336144

RESUMO

Pseudohemocyanin is a member of the hemocyanin superfamily, but little research is available on its function in immunology. In this study, a Portunus trituberculatus pseudohemocyanin gene, named PtPhc1, was obtained by gene cloning. The PtPhc1 cDNA was 2312 bp in length, encoding 684 amino acids while exhibiting a characteristic hemocyanin structural domain. Tissue expression analysis revealed ubiquitous expression of PtPhc1 across all tissues, with the highest level of expression observed in the hepatopancreas. The expression pattern of PtPhc1 in response to Vibrio parahaemolyticus infection was clarified using RT-qPCR in swimming crabs. Notably, the expression peaked at 24 h, and increased 1435-fold compared to the control group in the hepatopancreas. While the expression level reached the maximum value at 72 h, which was 3.24 times higher than that of the control group in hemocytes. Remarkably, the reduction in PtPhc1 expression led to a noteworthy 30% increase in the mortality rate of P. trituberculatus when exposed to V. parahaemolyticus. In addition, in vitro bacterial inhibition assays exhibited a dose-dependent suppression of bacterial proliferation by recombinant PtPhc1 protein, with a notable inhibition rate of 48.33% against V. parahaemolyticus at a concentration of 0.03 mg/mL. To the best of our knowledge, the results establish the function of pseudohaemocyanin in immunity for the first time, contributing to a deeper comprehension of innate immune regulatory mechanisms in aquatic organisms and advancing strategies for disease-resistant breeding.


Assuntos
Braquiúros , Vibrio parahaemolyticus , Animais , Sequência de Bases , Sequência de Aminoácidos , Vibrio parahaemolyticus/genética , Hemocianinas/genética , Natação , Filogenia
7.
BMC Genomics ; 25(1): 178, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355437

RESUMO

BACKGROUND: Acute Hepatopancreatic Necrosis Disease (AHPND) causes significant mortality in shrimp aquaculture. The infection is primarily instigated by Vibrio parahaemolyticus (Vp) strains carrying a plasmid encoding the binary toxin PirAB. Yet, comprehension of supplementary virulence factors associated with this relatively recent disease remains limited. Furthermore, the same holds for gastroenteritis in humans caused by other Vp genotypes. Additionally, given the prevalent use of antibiotics to combat bacterial infections, it becomes imperative to illuminate the presence of antimicrobial resistance genes within these bacteria. RESULTS: A subsampled number of 1,036 Vp genomes was screened for the presence of antimicrobial resistance genes, revealing an average prevalence of 5 ± 2 (SD) genes. Additional phenotypic antimicrobial susceptibility testing of three Vp strains (M0904, TW01, and PV1) sequenced in this study demonstrated resistance to ampicillin by all tested strains. Additionally, Vp M0904 showed multidrug resistance (against ampicillin, tetracycline, and trimethoprim-sulfamethoxazole). With a focus on AHPND, a screening of all Vibrio spp. for the presence of pirA and/or pirB indicates an estimated prevalence of 0.6%, including four V. campbellii, four V. owensii, and a Vibrio sp. next to Vp. Their pirAB-encoding plasmids exhibited a highly conserved backbone, with variations primarily in the region of the Tn3 family transposase. Furthermore, an assessment of the subsampled Vp genomes for the presence of known virulence factors showed a correlation between the presence of the Type 3 Secretion System 2 and tdh, while the presence of the Type 6 Secretion System 1 was clade dependent. Furthermore, a genome-wide association study (GWAS) unveiled (new) genes associated with pirA, pirB, tdh, and trh genotypes. Notable associations with the pirAB genotype included outer membrane proteins, immunoglobulin-like domain containing proteins, and toxin-antitoxin systems. For the tdh + /trh + genotypes (containing tdh, trh, or both genes), associations were found with T3SS2 genes, urease-related genes and nickel-transport system genes, and genes involved in a 'minimal' type I-F CRISPR mechanism. CONCLUSIONS: This study highlights the prevalence of antimicrobial resistance and virulence genes in Vp, identifying novel genetic markers associated with AHPND and tdh + /trh + genotypes. These findings contribute valuable insights into the genomic basis of these genotypes, with implications for shrimp aquaculture and food safety.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Humanos , Animais , Vibrio parahaemolyticus/genética , Antibacterianos/farmacologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Prevalência , Farmacorresistência Bacteriana/genética , Genômica , Genótipo , Fatores de Virulência/genética , Ampicilina , Necrose , Penaeidae/genética , Penaeidae/microbiologia
8.
Sci Rep ; 14(1): 4137, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374337

RESUMO

In this study, three generations of polymerase chain reaction (PCR) assays: (i) conventional PCR, (ii) qPCR and (iii) droplet digital PCR (ddPCR), were systematically tested for their abilities to detect non-pathogenic and pathogenic populations of Vibrio parahaemolyticus. The limit of detection (LOD) for the ddPCR was 1.1 pg/µL of purified DNA, followed by the qPCR (5.6 pg/µL) and the conventional PCR (8.8 pg/µL). Regarding the LOD for V. parahaemolyticus cells, the ddPCR assay was able to detect 29 cells, followed by the conventional PCR assay (58 cells) and the qPCR assay (115 cells). Regarding the sensitivities to detect this pathogen from PCR inhibition prone samples (naturally contaminated mussels), the ddPCR assay significantly outperformed the conventional PCR and qPCR. The ddPCR assay was able to consistently detect non-pathogenic and pathogenic populations of V. parahaemolyticus from naturally contaminated mussels, indicating its tolerance to various PCR inhibitors. This study also revealed the significant difference between conventional PCR and qPCR. The conventional PCR assay showed significantly greater sensitivity than that of the qPCR assay in detecting V. parahaemolyticus in crude samples, whereas the qPCR assay showed better sensitivity in detecting the presence of V. parahaemolyticus in purified DNA samples.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Alimentos Marinhos , DNA
9.
Ultrason Sonochem ; 103: 106771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245921

RESUMO

As an effective non-thermal sterilization method, ultrasound remains at the level of passive bacterial death despite the initial understanding of its sterilization mechanism. Here, we present the perspective that bacteria can choose to actively enter an apoptosis-like death state in response to external ultrasonic stress. In this study, Vibrio parahaemolyticus exhibited apoptotic markers such as phosphatidylserine ectropion and activated caspases when subjected to ultrasound stress. Additionally, the accumulation of reactive oxygen species (ROS) and enhanced calcium signaling were observed. Further transcriptomic analysis was conducted to investigate the regulatory mechanism of the SOS response in Vibrio parahaemolyticus during an apoptosis-like state. The results showed that the genes encoding the citrate cycle were down-regulated in Vibrio parahaemolyticus cells adapted to ultrasonic stress, leading to an apoptosis-like state and a decrease in production capacity and ability to catabolize carbon dioxide. Furthermore, the level of oxidized glutathione increased, suggesting that the bacteria were engaged in various anti-oxidative stress responses, ultimately leading to apoptosis. Moreover, the ultrasound field activated the regulatory factor CsrA, which facilitates stress survival as cells transition from rapid growth to an apoptotic state through a stringent response and catabolic inhibition system. Parallel reaction monitoring (PRM) revealed that the expression of certain key SOS proteins in Vibrio parahaemolyticus was up-regulated following ultrasound treatment, resulting in a gradual adaptation of the cells to external stress and ultimately leading to active cell death. In conclusion, the biological lethal effect of ultrasound treatment is not solely a mechanical cell necrosis process as traditionally viewed, but also a programmed cell death process regulated by cellular adaptation. This enriched the biological effect pathway of ultrasound sterilization.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Resposta SOS em Genética , Ultrassom , Apoptose , Perfilação da Expressão Gênica
10.
PeerJ ; 12: e16422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188160

RESUMO

Background: Vibrio parahaemolyticus is the leading cause of bacterial seafood-borne gastroenteritis in humans worldwide. To ensure seafood safety and to minimize the occurrence of seafood-borne diseases, early detection of total V. parahaemolyticus (pathogenic and non-pathogenic strains) and pathogenic V. parahaemolyticus (tdh+ and/or trh1+ and/or trh2+) is required. This study further improved a loop-mediated isothermal amplification (LAMP) assay using xylenol orange (XO), a pH sensitive dye, to transform conventional LAMP into a one-step colorimetric assay giving visible results to the naked eye. LAMP-XO targeted rpoD for species specificity and tdh, trh1, and trh2 for pathogenic strains. Multiple hybrid inner primers (MHP) of LAMP primers for rpoD detection to complement the main primer set previously reported were designed by our group to maximize sensitivity and speed. Methods: Following the standard LAMP protocol, LAMP reaction temperature for rpoD, tdh, trh1, and trh2 detection was first determined using a turbidimeter. The acquired optimal temperature was subjected to optimize six parameters including dNTP mix, betaine, MgSO4, Bst 2.0 WarmStart DNA polymerase, reaction time and XO dye. The last parameter was done using a heat block. The color change of the LAMP-XO result from purple (negative) to yellow (positive) was monitored visually. The detection limits (DLs) of LAMP-XO using a 10-fold serial dilution of gDNA and spiked seafood samples were determined and compared with standard LAMP, PCR, and quantitative PCR (qPCR) assays. Subsequently, the LAMP-XO assay was validated with 102 raw seafood samples and the results were compared with PCR and qPCR assays. Results: Under optimal conditions (65 °C for 75 min), rpoD-LAMP-XO and tdh-LAMP-XO showed detection sensitivity at 102 copies of gDNA/reaction, or 10 folds greater than trh1-LAMP-XO and trh2-LAMP-XO. This level of sensitivity was similar to that of standard LAMP, comparable to that of the gold standard qPCR, and 10-100 times higher than that of PCR. In spiked samples, rpoD-LAMP-XO, tdh-LAMP-XO, and trh2-LAMP-XO could detect V. parahaemolyticus at 1 CFU/2.5 g spiked shrimp. Of 102 seafood samples, LAMP-XO was significantly more sensitive than PCR (P < 0.05) for tdh and trh2 detection and not significantly different from qPCR for all genes determined. The reliability of tdh-LAMP-XO and trh2-LAMP-XO to detect pathogenic V. parahaemolyticus was at 94.4% and 100%, respectively. Conclusions: To detect total and pathogenic V. parahaemolyticus, at least rpoD-LAMP-XO and trh2-LAMP-XO should be used, as both showed 100% sensitivity, specificity, and accuracy. With short turnaround time, ease, and reliability, LAMP-XO serves as a better alternative to PCR and qPCR for routine detection of V. parahaemolyticus in seafood. The concept of using a one-step LAMP-XO and MHP-LAMP to enhance efficiency of diagnostic performance of LAMP-based assays can be generally applied for detecting any gene of interest.


Assuntos
Gastroenterite , Vibrio parahaemolyticus , Humanos , Colorimetria , Vibrio parahaemolyticus/genética , Reprodutibilidade dos Testes
11.
Biochem Biophys Res Commun ; 695: 149485, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211535

RESUMO

YqeY is a functionally and structurally uncharacterized protein that is ubiquitously expressed in bacteria. To gain structural insights into the function of YqeY, we determined the crystal structures of the Campylobacter jejuni and Vibrio parahaemolyticus YqeY proteins (cjYqeY and vpYqeY, respectively) and analyzed the structural and functional roles of conserved residues via a mutational study. Both cjYqeY and vpYqeY were found to adopt a two-domain structure consisting of an N-terminal four-α-helix domain and a C-terminal three-α-helix domain, with a relatively flexible interdomain orientation. The YqeY structure is unique in its linkage of the two α-helix domains although the C-terminal YqeY domain is structurally homologous to the terminal appendages of glutaminyl-tRNA synthetase and tRNA-dependent amidotransferase. We identified six conserved YqeY residues (Y67, R72, E82, Y89, P91, and G119) and evaluated their roles in protein stability via alanine mutation using a thermal shift assay. Residues Y67, R72, Y89, and P91 were shown to be required to maintain the structural integrity of YqeY. In contrast, residues E82 and G119 were not found to be essential for protein stability and are highly likely to contribute to the biological function of YqeY.


Assuntos
Campylobacter jejuni , Vibrio parahaemolyticus , Sequência de Aminoácidos , Campylobacter jejuni/genética , Vibrio parahaemolyticus/genética , Proteínas/metabolismo , Mutação
12.
Anal Chem ; 96(4): 1781-1788, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214113

RESUMO

Efficient, accurate, and economical detection of pathogenic bacteria is crucial in ensuring food safety and preventing foodborne illnesses. How to fulfill the highly sensitive and simultaneous detection of multiple trace pathogenic bacteria is a big challenge. In this work, capillary electrophoresis coupled with a cyclic multiple primer generation rolling circle amplification (cyclic MPG-RCA) was studied for highly sensitive and simultaneous detection of three kinds of pathogenic bacteria. The cyclic MPG-RCA was based on a carefully designed clover-shaped DNA probe, in which three "leaves" corresponded to three types of aimed pathogenic bacteria: Shigella dysenteriae (S. dysenteriae), Salmonella enterica subsp. enterica serovar Typhi (S. Typhi), and Vibrio parahaemolyticus (V. parahaemolyticus). Under the optimal experimental conditions, the limits of detection (S/N = 3) of this method for bacterial target DNA were 11.4 amol·L-1 (S. dysenteriae), 4.88 amol·L-1 (S. Typhi), and 14.9 amol·L-1 (V. parahaemolyticus), and the conversion concentrations for the target bacteria were 10 colony-forming units (CFU)·mL-1 (S. dysenteriae), 3 CFU·mL-1 (S. Typhi), and 12 CFU·mL-1 (V. parahaemolyticus). This method had been applied to the detection of tap water samples with good results, which proved that it could be used as an effective tool for trace pathogenic bacteria monitoring in foods, environments, and medicines.


Assuntos
Bactérias , Vibrio parahaemolyticus , Salmonella , Vibrio parahaemolyticus/genética , Eletroforese Capilar
13.
Int J Biol Macromol ; 259(Pt 2): 129395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218285

RESUMO

Vibrio parahaemolyticus causes diseases in aquatic organisms, leading to substantial financial losses to the aquaculture industry; its flagellin F (flaF) protein triggers severe inflammation in host cells. To enhance the understanding of the function of flaF in V. parahaemolyticus infection, in this study, a flaF-deficient mutant was constructed by employing two-step homologous recombination. The flaF-deficient mutant induced a significantly lower toll-like receptor 5 (TLR5) expression and apoptosis in fish intestinal epithelial cells than the wild-type V. parahaemolyticus. Furthermore, fluorescence labelling and microscopy analysis of TLR5 showed that V. parahaemolyticus and its mutant strain significantly enhanced TLR5 expression. Additionally, the findings suggest that flaF deletion did not significantly affect the expression of myeloid differentiation factor 88 (MyD88) and interleukin-8 (IL-8) induced by V.parahaemolyticus. In summary, V. parahaemolyticus induced a TLR5-dependent inflammatory response and apoptosis through MyD88, which was observed to be influenced by flaF deletion. In this study, we obtained stable mutants of V. parahaemolyticus via target gene deletion-which is a rapid and effective approach-and compared the induction of inflammatory response and apoptosis by V. parahaemolyticus and its mutant strain, providing novel perspectives for functional gene research in V. parahaemolyticus.


Assuntos
Perciformes , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/genética , Flagelina/genética , Flagelina/farmacologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Perciformes/genética
14.
Appl Microbiol Biotechnol ; 108(1): 180, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285117

RESUMO

Phenyllactic acid (PLA) generally recognized as a natural organic acid shows against Vibrio parahaemolyticus activity. In this study, V. parahaemolyticus ATCC17802 (Vp17802) was cultured under the stress of 1/2MIC PLA, and then the antibacterial mechanisms were explored via transcriptomics. The minimum inhibitory concentration (MIC) of PLA against Vp17802 was 3.2 mg/mL, and the time-kill analysis resulted that Vp17802 was inhibited. PLA was able to destroy the bacterial membrane, leading to the leakage of intracellular substances and decline of ATP levels. The RNA-sequencing analysis results indicated that 1616 significantly differentially expressed genes were identified, among which 190 were up-regulated and 1426 were down-regulated. Down-regulation of the icd2 gene in the TCA cycle mediates blockage of tyrosine metabolic, arginine biosynthesis, and oxidative phosphorylation, causing insufficient energy supply of Vp17802. Moreover, PLA could cause amino acids, metal ions, and phosphate transporters to be blocked, affecting the acquisition of nutrients. The treatment by PLA altered the expression of genes encoding functions involved in quorum sensing, flagellar assembly, and cell chemotaxis pathway, which may be interfering with the biofilm formation in Vp17802, reducing cell motility. Overall, 1.6 mg/mL PLA inhibited the growth of Vp17802 by disrupting to uptake of nutrients, cell metabolism, and the formation of biofilms. The results suggested a new direction for exploring the activity of PLA against Vp17802 and provided a theoretical basis for bacterial pathogen control in the food industry. KEY POINTS: •RNA sequencing was carried out to indicate the antibacterial mechanism of Vp17802. •The icd2 gene in the TCA cycle mediates blockage of metabolic of Vp17802. •The biofilm formation has interfered with 1.6 mg/mL PLA, which could reduce cell motility and virulence.


Assuntos
Lactatos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Perfilação da Expressão Gênica , Antibacterianos/farmacologia , Poliésteres
15.
Fish Shellfish Immunol ; 144: 109282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081442

RESUMO

Vibrio parahaemolyticus carrying a pathogenic plasmid (VPAHPND) is one of the main causative agents of acute hepatopancreatic necrosis disease (AHPND) in shrimp aquaculture. Knowledge about the mechanism of shrimp resistant to VPAHPND is very helpful for developing efficient strategy for breeding AHPND resistant shrimp. In order to learn the mechanism of shrimp resistant to AHPND, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp from different families with different resistance to VPAHPND. Through comparative analysis on the hepatopancreas of shrimp from VPAHPND resistant family and susceptible family, we found that differentially expressed genes (DEGs) were mainly involved in immune and metabolic processes. Most of the immune-related genes among DEGs were highly expressed in the hepatopancreas of shrimp from resistant family, involved in recognition of pathogen-associated molecular patterns, phagocytosis and elimination of pathogens, maintenance of reactive oxygen species homeostasis and other immune processes etc. However, most metabolic-related genes were highly expressed in the hepatopancreas of shrimp from susceptible family, involved in metabolism of lipid, vitamin, cofactors, glucose, carbohydrate and serine. Interestingly, when we analyzed the expression of above DEGs in the shrimp after VPAHPND infection, we found that the most of identified immune-related genes remained at high expression levels in the hepatopancreas of shrimp from the VPAHPND resistant family, and most of the identified metabolic-related genes were still at high expression levels in the hepatopancreas of shrimp from the VPAHPND susceptible family. The data suggested that the differential expression of these immune-related and metabolic-related genes in hepatopancreas might contribute to the resistance variations of shrimp to VPAHPND. These results provided valuable information for understanding the resistant mechanism of shrimp to VPAHPND.


Assuntos
Penaeidae , Vibrioses , Vibrio parahaemolyticus , Humanos , Animais , Transcriptoma , Vibrio parahaemolyticus/genética , Hepatopâncreas , Penaeidae/genética , Perfilação da Expressão Gênica , Necrose
16.
Biometals ; 37(2): 507-517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133869

RESUMO

Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.


Assuntos
Pirrolidinonas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo , Vias Biossintéticas , Ácidos Cetoglutáricos/metabolismo , Ferro/metabolismo , Sideróforos/química , Citratos/metabolismo
17.
mBio ; 15(1): e0285123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112441

RESUMO

IMPORTANCE: An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Prófagos , Vibrio parahaemolyticus/genética , Inoviridae , Ecossistema , Bactérias , Bacteriófagos/genética
18.
Front Cell Infect Microbiol ; 13: 1294801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089817

RESUMO

Introduction: The binary PirA/PirB toxin expressed by Vibrio parahaemolyticus (PirABVp) is a virulent complex that causes acute hepatopancreatic necrosis disease (AHPND) in shrimps, affecting the global shrimp farming industry. AHPND is currently diagnosed by detecting pirA and pirB genes by PCR; however, several V. parahaemolyticus strains do not produce the two toxins as proteins. Thus, an immunoassay using antibodies may be the most effective tool for detecting toxin molecules. In this study, we report a sandwich ELISA-based immunoassay for the detection of PirABVp. Methods: We utilized a single-chain variable fragment (scFv) antibody library to select scFvs against the PirA or PirB subunits. Phage display panning rounds were conducted to screen and identify scFv antibodies directed against each recombinant toxin subunit. Selected scFvs were converted into IgGs to develop a sandwich immunoassay to detect recombinant and bacterial PirABVp. Results: Antibodies produced as IgG forms showed sub-nanomolar to nanomolar affinities (KD), and a pair of anti-PirA antibody as a capture and anti-PirB antibody as a detector showed a limit of detection of 201.7 ng/mL for recombinant PirABVp. The developed immunoassay detected PirABVp in the protein lysates of AHPND-causing V. parahaemolyticus (VpAHPND) and showed a significant detectability in moribund or dead shrimp infected with a VpAHPND virulent strain compared to that in non-infected shrimp. Discussion: These results indicate that the developed immunoassay is a reliable method for diagnosing AHPND by detecting PirABVp at the protein level and could be further utilized to accurately determine the virulence of extant or newly identified VpAHPND in the global shrimp culture industry.


Assuntos
Penaeidae , Toxinas Biológicas , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/genética , Penaeidae/microbiologia , Ensaio de Imunoadsorção Enzimática , Doença Aguda , Necrose
19.
Arch Microbiol ; 206(1): 41, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147133

RESUMO

Vibrio parahaemolyticus is a significant cause of seafood-associated gastroenteritis and pestilence in aquaculture worldwide. Despite extensive research, strategies for protein depletion in this pathogen remain limited. Herein, we constructed a new CRISPR interference (CRISPRi) system for gene repression based on the combination of a shuttle vector pVv3 and the nuclease-null Cas9 variant (dead Cas9, or dCas9) from Streptococcus pyrogens. This CRISPRi is induced by adding both IPTG and arabinose. We showed that gene repression is scalable via the use of multiple sgRNAs. We also demonstrated that this gene repression can be precisely tuned by adjusting the amount of two different inducers and can be reversed by removing the inducers. This system provides a simple approach for selective gene repression on a genome-wide scale in V. parahaemolyticus. Application of this system will dramatically accelerate investigations of this bacterium, including studies of physiology, pathogenesis, and drug target discovery.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , RNA Guia de Sistemas CRISPR-Cas , Aquicultura , Arabinose , Descoberta de Drogas
20.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139356

RESUMO

Litopenaeus vannamei is one of the most economically significant aquatic species globally. However, the emergence of acute hepatopancreatic necrosis disease (AHPND) in recent years has resulted in substantial losses within the L. vannamei farming industry. Phage therapy holds promise as an effective strategy for preventing and controlling bacterial infections like AHPND, thereby promoting the healthy and sustainable growth of the shrimp aquaculture sector. In this study, a novel and unique Vibrio parahaemolyticus bacteriophage, named vB_VpaP_SJSY21, was successfully isolated from sewage samples. Using transmission electron microscopy, it was observed that phage SJSY21 has an elongated shell. Notably, phage SJSY21 exhibited high infection efficiency, with an optimal multiplicity of infection (MOI) of only 0.01 and a remarkably short latent period of 10 min, resulting in a lysis quantity of 508. Furthermore, phage SJSY21 demonstrated notable heat resistance and the capacity to withstand high temperatures during preservation, thus holding potential for application in phage therapy. Whole-genome sequencing and analysis confirmed that phage SJSY21 has a genome size of 110,776 bp, classifying it as a new member of the short-tailed bacteriophage family. Additionally, cultivation experiments indicated that phage SJSY21 has the potential to enhance the survival of L. vannamei in culture systems, thereby offering innovative prospects for the application of phage therapy in aquaculture.


Assuntos
Bacteriófagos , Penaeidae , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/genética , Aquicultura , Necrose , Penaeidae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...